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Abstract: The  objective  of  the  Intact-project  is  to  analyze  and  develop  methods  for
infrastructure–free simultaneous localization and mapping (SLAM) and context recognition for
tactical situational awareness. Most important research questions are how an accurate and
reliable  SLAM  system  may  be  obtained  using  a  single  camera,  multiple  inertial  sensors  and
ranging equipment, and how good situational awareness the equipment provides. All
measurements will be collected using only equipment attached to the user. Indoor
environments are selected as a specific research environment, because localization is most
challenging in those areas, but all results are well suited also for urban and for some extent for
all outdoor environments. The project addresses applications aimed for soldiers, but the
methods developed will serve the needs of e.g. police, border guards and rescue personnel as
well.

1. Introduction

Tactical situational awareness for military applications should be based on infrastructure-free
systems and should be able to form knowledge of the previously unknown environment. Also,
information of the soldier’s context is important for successful operations, e.g. if the soldier is
running,  crawling  or  static  for  a  long  time.  Requirements  for  the  system  are  stringent;  it
should function also in indoor environments, lightweight and inexpensive. The infrastructure-
free requirement is motivated by the fact that rescue and military personnel must be able to
operate reliably in any environment, regardless of the available infrastructure. Simultaneous
Localization  and  Mapping  (SLAM)  is  a  key  technology  for  providing  an  accurate  and  reliable
infrastructure-free solution for indoor situational awareness (Davison et al. 2007). However,
indoor environments and the requirements for the system make the implementation of SLAM
using existing algorithms challenging. Most existing algorithms were developed for use in
robotics where size and weight requirements are not as stringent. Due to size limitations, we
will implement SLAM using a monocular camera as an input. However, existing algorithms for
monocular SLAM do not provide reliable enough results for rescue or military applications.

At present, most functioning indoor localization systems are based on processing short- range
radio signals from pre-installed networks and therefore cannot be considered as infrastructure-
free.  Advances  in  sensor  technology  have  been  rapid  during  the  last  several  decades.  Self-
contained Micro-Electro-Mechanical (MEMS) sensors fulfill the size and cost requirements set
for  an infrastructure-free military and rescue system (Rantakokko et  al.  2011).  Use of,  e.g.,
inertial sensors provides enough information for propagating a known initial position for the
purposes of forming a SLAM solution with a camera. However, the MEMS sensors suffer from
biases  and  drift  errors  that  may  decrease  the  position  accuracy  substantially  (Collin  2006).
Therefore, sophisticated error modelling and implementation of integration algorithms are key
for providing a viable final result.
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Integration of different sensors has been an active research area already for some years, but
there does not yet exist an accurate and reliable infrastructure-free indoor positioning system.
Our approach is to integrate a monocular camera, multiple Inertial Measurement Units (IMUs),
a  barometer  and  a  ranging  sensor  to  obtain  a  solution  for  SLAM,  as  well  as  tactical  motion
information. This project investigates also some sensors less used for positioning, such as
ultrasound, for obtaining more accurate positioning and also resolving the height of the
camera,  which  is  needed  for  the  visual  processing  of  the  method  discussed  below.  Also,
positioning using multiple inertial sensors is studied. One inertial unit is foot mounted and
other units will be placed on the helmet and body enabling context recognition, e.g. observing
the  dynamics  of  the  soldier  or  if  he  has  been  static  for  a  long  time  and  therefore  possibly
wounded.

Digital TV (DTV) signals penetrate buildings much better than satellite signals and therefore
provide absolute position information also indoors. The use of DTV indoors has been research
only slightly until now. Intact-project investigates the accuracy of an absolute position solution
obtained using DTV signals.

2. Research objectives and accomplishment plan
Most important research questions are how an accurate and reliable SLAM system may be ob-
tained using a single camera, multiple inertial sensors and ranging equipment, and how good
situational awareness the equipment provides. The research investigates also some sensors,
previously less used for indoor positioning but suitable for the task, such as ultrasound ranging
equipment attached to the soldier’s person and digital tv signals, whose antenna may also be
attached to soldier’s equipment.

At the beginning of the INTACT project an extensive literature review was made for obtaining
knowledge of the state-of-the-art. Then, all equipment needed for the research were selected,
purchased and studied. Algorithms for obtaining motion measurements (i.e. range, speed,
height and heading) from foot-mounted inertial sensor, barometer and sonar were implement-
ed.   After  evaluating the measurements and performance of  each independent sensor a test
campaign  was  done  for  collecting  data  from  all  equipment  attached  to  a  test  person.  Then,
development  for  fusion,  machine  learning  and  SLAM  algorithms  was  started.  First  a  Kalman
filter was implemented for multi-sensor fusion. As Kalman filter is aimed for fusions with linear
models, which motion of an unmounted soldier is definitely not, a Particle filter fusion algo-
rithm was also developed. Simultaneously, development for machine learning algorithms for
improved  context  recognition  was  carried  on.  Also,  the  development  of  a  SLAM  algorithm
based on (Civera et al. 2010) was started, integrating vision-aided algorithms developed earli-
er at FGI (Ruotsalainen 2013) for improved performance of the SLAM solution. The developed
methods were tested and the results analyzed frequently, every time new tasks were accom-
plished. The developed methods and results are discussed in this report.

3. Materials and methods

This section discusses the materials used in the research and the methods developed in Intact.

3.1 SLAM

Slam algorithm provides simultaneous localization of the user and a map of the unknown envi-
ronment. Feasible SLAM solutions have been developed for robots. However, the requirements
set for the equipment by the unmounted soldiers and rescue personnel, i.e. size and cost, ne-
cessitate the development of novel algorithms. Existing methods using a monocular camera
and MEMS sensors do not provide sufficient performance yet and therefore new methods are
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developed in Intact-project. The SLAM algorithm developed by (Civera  et  al.  2010)  will  be
used as the base for the SLAM development, but in Intact it will be heavily improved by inte-
grating the visual gyroscope and visual odometer (Ruotsalainen 2013) measurements for im-
proved accuracy, by further developing the error detection algorithms and by developing the
map properties to be more suitable for tactical applications, namely by computing also the ver-
tical position solution and improving the representation.

3.2 FOOT-MOUNTED PDR

In general, the quality of low-cost MEMS inertial sensors is inadequate for use in the above
mechanization except for very short periods of time. This is why pedestrian dead reckoning
(PDR) mechanizations are typically used which resort to detecting steps from the inertial sen-
sors’ output waveform and applying an external model for the stride length (Beauregard and
Haas 2006). Such mechanization avoids the error-prone double integration of inertial meas-
urements. However, human gait differs from person to person, which makes the stride length
difficult to predict (Leppäkoski 2015). However, mounting the IMU to the foot of a pedestrian
constitutes a special case: Unless the shoe slips, the IMU remains stationary for a short period
of time between steps (Foxlin 2005). This makes it possible to compute the step displacement
and therefore avoid the need for an external step length model. The method also works when
stepping sidewards or backwards, and when walking in stairs

However, the MEMS gyros are quite sensitive to temperature changes and need minutes to
stabilize after e.g. entering indoors from cool outdoor conditions before they can provide accu-
rate  heading  information  (Leland  2005).  Also,  high  linear  accelerations  induce  large  G-
sensitivity errors (Bancroft and Lachapelle 2012). Tactical operations often include both large
changes in the temperature and large accelerations. Therefore, foot-mounted IMUs alone do
not provide sufficient performance.

The research on foot-mounted inertial sensors has been conducted using the OpenShoe plat-
form (http://www.openshoe.org/) as the source of measurements. The OpenShoe inertial
measurement unit (IMU) is small in size and weight as can be seen in

Figure 1,  allowing non-obtrusive mounting onto the shoe, and its  accelerometers and gyro-
scopes represent the performance level of modern mass-market microelectromechani-
cal (MEMS) inertial sensors.

Figure 1 OpenShoe inertial measurement unit (length scale in centimeters)

3.3 ULTRASOUND

Ultrasound has been used for positioning for long already. However, for the moment most of
ultrasound positioning systems use transmitters attached to the environment and therefore
require an infrastructure, whereas ultrasound ranging equipment contain both the transmitter
and receiver. The project investigates how accurate position information may be obtained by
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doing the measuring continuously to multiple directions using equipment attached e.g. to the
soldier. Finally, algorithms are developed for integrating the ultrasound ranging measurements
with  other  sensors  and  SLAM  algorithms  and  the  accuracy  of  the  resulting  localization  and
mapping is analyzed.

3.4 MULTI-SENSOR INTEGRATION

This section gives a short overview of Bayesian estimation methods used for integrating meas-
urements from different sources. Two different integration algorithms, a Kalman filter and a
Particle filter, have been developed in Intact in order to find the best performing fusion. The
multi-sensor results are discussed in the Results and discussion section.

3.4.1 Recursive Bayesian estimation

Recursive Bayesian estimation algorithms (Gelman et al. 2000, Thrun et al. 2005) are com-
monly used to estimate the state of a system kx at the time kt  based on all measurements up
to that time. The recursive Bayesian estimation is performed with the following two steps: 1)
Prediction: a priory probability is calculated from the last a posteriori probability using the pro-
cess model. 2) Update: a posteriori probability is updated using the measurement model (9)
and the current measurement. Depending on how the probabilities are represented and trans-
formed in the process and measurement models, the recursive Bayesian estimation algorithms
are  implemented  in  different  ways.  For  a  linear  and  Gaussian  probability  density  function
(p.d.f.)  model,  the Kalman Filter  (KF) is  an efficient  and optimal  solution in the least  square
sense (Anderson and Moore 1979). Recently, Sequential Monte Carlo (SMC) Filters, such as the
particle filter  (PF) (Arulampalan et  al.  2002) has been applied in the state estimation in the
nonlinear and non-Gaussian models, where the probability densities are represented by a set
of random state space samples drawn from the corresponding distribution.

3.4.2 Kalman Filter Based Navigation Method

A very simple Kalman filter was developed for obtaining a three-dimensional multi-sensor posi-
tion solution. The state model of the filter included latitude, longitude, height, heading rate,
heading and speed. Filter used data from the visual gyroscope and odometer, XSENS IMU, ba-
rometer and sonar as measurements.  The filter  mechanization,  e.g.  the covariance matrices,
followed the development discussed in (Kuusniemi et al. 2011). The results are discussed more
in the Results section.

3.4.3 Particle Filter Based Navigation Method

Particle filtering is based on the Bayesian statistical theory and Monte Carlo (MC) simulation.
Particle  filters  provide  a  set  of  weighted  MC samples  of  the  state  at  each  time  instant  (Liu,
2001). These samples are called particles.

In Intact, we have implemented a particle filter that computes 3D position, heading and speed,
all information needed for an indoor navigation solution. More information of the algorithm
may be found from (Ruotsalainen et al. 2016).

3.5 SITUATIONAL AWARENESS

Situational awareness, in the mobile computing community also known as context awareness,
is the ability to automatically provide information for seven key questions concerning the user:
what, who, where, when, why, in what manner, and by what means (Chen and Guinness
2014). This is done by using machine learning algorithms. In the first year of Intact, prelimi-
nary investigation into the capabilities for context recognition using multi-sensor data has been
initiated. Using the data from the Xsens IMU, we tested the performance of several different
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machine learning classification algorithms to recognize several different motion / pose con-
texts, including:  walking, walking slowly, walking very slowly, standing, jogging, ascending
stairs, descending stairs, turning around, standing to crouching position, crouching. The results
are shown in Section 4.

3.6 DTV POSITIONING

Digital television signals have been recognized to be promising signals of opportunity for wire-
less positioning and due to their features described below, they are feasible for indoor position-
ing. DTV signals can be used for computing pseudorange measurements between the transmit-
ter and the receiver like in satellite positioning, and when signals from at least four transmit-
ters are received, a three dimensional position solution may be computed by trilateration. DTV
signals have larger transmission power (10 to 15 KW) compared to satellite positioning signals
and therefore they are easily transmitted through walls and windows. Also, as the transmitters
are on the ground, the signals have shorter path through structures when entering the indoor
environment through walls instead of the roof and stores, maintaining more power. DTV sig-
nals have also large signal bandwidth (6-8 MHz) which leads to more accurate pseudorange
measurements.

In Intact, a self-developed USRP software defined DVB-T receiver is used to sampling the DVB-
T2 signals indoors and analyzing the signal spectrum. The central frequency of the sampled
signal is set as 177.5 MHz and sampling rate is 10 Msamples/s. The results are discussed in
the next section.

4. Results and discussion

This section discusses the results obtained by processing the data collected in a data campaign
and processed by algorithms developed in the Intact-project. The equipment used for data
collection were a GoPro camera, XSENS Inertial Navigation Sensor unit (IMU and barometer),
an Osmium MIMU22BT IMU attached to the foot and a HRUSB-MaxSonar sonar for ranging.

4.1 SLAM

So far our main contribution to current SLAM technologies has been the integration of the vis-
ual gyroscope and visual odometer to the 1-point ransac algorithm by (Civera et al. 2010). In
addition, we have used a wide angle camera which provides much larger field of view. This
caused us to move from more traditional pinhole camera model, radial and tangential lens dis-
tortion correction to more flexible camera calibration technique for omnidirectional cameras
(Scaramuzza et al. 2006). This improves the accuracy of the visual motion perception, but re-
quires special processing of the images. The initial results of the SLAM localization processing

are very promising and have been published in
(Ruotsalainen et al. 2015).

Figure  2.  An  initial  SLAM  solution  using  a  mo-
nocular  camera.  The  accuracy  of  the  position  is
1.8 m, however the turns in the corridor ends are
re-initialized by using the reference system.
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SLAM –systems using monocular camera provide maps that consists of image feature points.
Feature points are extracted from consecutive images and matched. Significant portion of the
matches are wrongly paired and this causes errors to the final attitude and translation esti-
mates. To minimize the count of wrong matches, we have used the 1-point Ransac algorithm
and further improved its performance as described above.

4.2 FOOT-MOUNTED INERTIAL MEASUREMENT UNIT

Foot-mounted pedestrian dead reckoning was studied in use cases where the user is walking
on a level surface, although the foot-mounted inertial navigation mechanization can cope with
altitude changes as well; investigating the performance with height changes is left for future
work. Raw data were recorded from the IMU at a sampling rate of 125 Hz or more, depending
on the test, and all position computations were carried out in Matlab as post-processing;
however, the positioning algorithms themselves are not limited to post-processing but can be
run in real time.

Figure 3 Example foot-mounted
pedestrian dead reckoning trajec-
tory estimate

The test results suggest that the foot-mounted pedestrian dead reckoning implementation can
yield  a  few  meters  relative  horizontal  position  accuracy  without  external  assistance  or  prior
calibration (the only assumption is that the IMU is stationary at start-up, but this period need
not last longer than one second). An example pedestrian dead reckoning result is shown in
Figure 3 where the red dots indicate instants where the foot was detected to be stationary. It
can be seen that when such detections are missing for a long time, the position accuracy de-
grades rapidly; therefore, it is critical to develop robust foot stance phase detection algorithms
that can work in different use cases, such as running and crawling, in addition to regular walk-
ing. The reason for the abrupt heading change near position (-30, 20) is unknown, but it is
probably related to starting the experiment straight after entering the indoor area or a stance
phase detection error.

4.3 INTEGRATION ALGORITHMS

This section discusses the results obtained by the Kalman filter and Particle filter integration
algorithms developed for multi-sensor fusion.

4.3.1 HORIZONTAL POSITION SOLUTION

Kalman filtering

The Kalman filter algorithm discussed above was tested by integrating the measurements form
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different combinations of sensors used from the set of: monocular GPro camera, XSENS IMU
and barometer, sonar and Novatel SPAN tactical grade GNSS/IMU system used normally as a
reference. The accuracy (mean error) of the horizontal position result obtained varied from 2
meters (SPAN IMU, visual odometer and visual gyroscope) to 5.4 m (XSENS IMU, visual odom-
eter, visual gyroscope). As a conclusion we decided to rely heavily on the measurement of the
visual processing, use foot-mounted IMU instead of the body-mounted mechanization and de-
velop a particle filter more suitable for the multi-sensor fusion of the application in question.

Particle filtering

The particle filter developed in the Intact-project was used for fusing measurements from the
visual  gyroscope  and  odometer,  foot-mounted  IMU,  a  barometer  and  sonar.  Only  the  intial
position and heading were initialized using the reference system, but since all processing was
done in an infrastructure-free manner. The mean error of the position obtained in the 160m
long path was 3.14m with the standard deviation of 2.8 m. The results, shown in Figure 4,
were very promising.

Figure 4. Particle filter fusion results compared
with the SPAN reference trajectory in horizontal
plane

4.3.2 VERTICAL POSITION SOLUTION

The standard deviation of the height observed in the experiments using only barometer was
0.15m, ultrasonar 0.01m and using the Particle filter developed 0.03m. The results, represent-
ed also in Figure 5, show that the integration of barometer and sonar measurements improves
the precision and therefore the stability of the height solution. However, the improvement is
incremental  and the barometer would be sufficient  in a favorable environment and situation.
The most important benefit from fusing the barometer height and sonar range measurements

is that it will provide improved vertical accura-
cy and reliability in the case of unexpected
changes in environment’s pressure and tem-
perature, which distort the height solution
heavily.
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Figure 5. Barometer and sonar height and the fusion results

4.4 Context recognition

Here we present the results from the preliminary investigation into the capabilities for context
recognition using multi-sensor data. Using the data from the Xsens IMU, we tested the perfor-
mance of several different machine learning classification algorithms to recognize several dif-
ferent motion / pose contexts, including:  walking, walking slowly, walking very slowly, stand-
ing, jogging, ascending stairs, descending stairs, turning around, standing to crouching posi-
tion, crouching. We found that decision-tree based classifiers performing rather well, achieving
correct context recognition about 98.5% of the time for our limited test data. The classification
result is shown in Figure 6.

Figure 6: Detailed context analysis using a Confusion matrix algorithm

In the future, we will investigate a wider range of combat-related contexts and integrate mul-
tiple sensors into the context recognition routine. We will also in-vestigate different methods
for feature generation and feature selection. Lastly, we will expand the number of machine
learning classification algorithms to be investigated and include parameter tuning in our per-
formance evaluations.

4.5 DIGITAL TV SIGNALS

This section discusses the indoor DVB-T2 tests carried out in Intact-project. The testing sce-
nario is shown in Figure 7 and the spectrum analysis results are presented in Figure 8. Based
on the spectrum analysis. The nominal bandwidth is 7 MHz, and the useful bandwidth shown in
the tests is 6.6 MHz, which is consistent with the standard (ETSI 2011). The tests also showed
that, the spectrum is not as flat as the theoretical value, which suggests that the DVB-
T2 signals should have experienced severe multipath and fading in the indoor scenario.
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Figure 7. indoor DVB-T2 testing scenario

Figure 8. Signal spectrum analysis on DVB-T2 signals acquired indoors

The  future  work  will  focus  on  analyze  the  signal  property  of  the DVB-T2 and study on the
methods for TOA based ranging method.

5. Conclusions
The results obtained are very promising both for the selection of the equipment to be used as
for the algorithms developed in the project. However, the accuracy of the position solution
should still be slightly improved to be in the scale of 1-2m, usually recognized to be optimal for
most positioning needs. Also, so far the algorithms have been tested only in an office corridor,
during  a  few  minutes  experiment  and  with  a  test  person  mainly  walking  in  a  near  constant
speed. Therefore, the next steps in the research would be to continue the careful error model-
ling and error detection algorithms for improved integration results, for both improving the
accuracy and the scalability of the method. Also, the next steps would be further developing
the SLAM algorithm and improving the representation of the map to include more information
of the environment. The motion recognition algorithms will be also developed to correctly clas-
sify more difficult motion patterns, e.g. crawling. Finally, when the performance of the devel-
oped  system  is  sufficient,  test  campaigns  in  a  more  realistic  and  challenging  environment
should be made.

6. Scientific publishing and other reports produced by the research project

A  paper  describing  the  development  of  a  monocular  SLAM  algorithm  encompassing  novel
methods for observing the heading and translation of the user from images:
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