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Abstract
If  a traveler  or  immigrant has biometric  passport,  then verifying the validity of  the passport
can be done by measuring face, fingerprint or voice and matching it against the stored model
in  the  chip  in  the  passport.  However,  many  countries  do  not  have  not  implemented  yet
biometric passport technology, in addition some Finnish passport categories, such as
temporary  passport  do  not  have  the  chip.  In  this  project  we  study  a  form  a  form  of  soft-
biometric,  which  does  not  identify  an  individual  but  a  group  of  individuals.  In  this  work  we
concentrated on the country origin,  that  is  a required field in all  passports.  If  we detect  the
country of origin to be false then we say that possibly the passport is fake. We implement the
country  of  origin  detection  by  the  way  of  detecting  the  English  foreign  accent.  We  have
recently proposed a universal acoustic characterisation to foreign accent recognition, in which
any  spoken  foreign  accent  was  described  in  terms  of  a  common  set  of  fundamental  speech
attributes. Although experimental evidence demonstrated the feasibility of our approach, we
believe  that  speech  attributes,  namely  manner  and  place  of  articulation,  can  be  better
modelled by a deep neural network. In this work, we propose the use of deep neural network
trained on telephone bandwidth material from different languages to improve the proposed
universal acoustic characterisation.

1. Introduction

If a traveler or immigrant has biometric passport, then verifying the validity of the passport
can be done by measuring face, fingerprint or voice and matching it against the stored model
in  the  chip  in  the  passport.  However,  many  countries  do  not  have  not  implemented  yet
biometric  passport  technology,  in  addition  some  Finnish  passport  categories,  such  as
temporary passport do not have the chip. In this project we study a form a form of soft-
biometric,  which does not identify an individual  but a group of  individuals.  In this  work we
concentrated on the country origin, that is a required field in all passports. If we detect the
country of origin to be false then we say that possibly the passport is fake. One famous case
of  fake  passport  travelers  were  two  Iranian  individuals  in  Malaysia  Airlines  flight  MH  370,
who were traveling with stolen passports. On of them was using Australian and the other
Italian passport. In that case the optimal response of our proposed system would have been
that it does not seem that this traveler is from Italy.

We  implement  the  country  of  origin  detection  by  the  way  of  detecting  the  English  foreign
accent.  Our  claim is  that  the  utilization  of  speech  attributes,  namely  manner  and  place  of
articulation, will  not only help in detection of the accent but also reveal the way how some
ethnic group typically mispronounces some English words. To exemplify, Italians often do not
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aspirate the /h/ sound in words such as house, hill and hotel. This lack of aspiration works as
cue that we have person originating from Italy speaking in English. However, estimation of
the manner and place of articulation is difficult task, where some attributes are not very well
detected at all. So the main task taken in this project was to significantly improve on the
speech attribute detection accuracy.

2. Research objectives and accomplishment plan

In automatic foreign accent recognition the mother tongue (L1) of non-native speakers has
to be recognised given a spoken segment in a second language (L2)  [1]. We may think of
L1 recognition as a language recognition task [2], where L1 is the target language to be
recognised. However, language recognition techniques based on n-gram phoneme statistics
are not directly usable, as the collected phoneme statistics would match the L2 language. In
[3], it was advocated the use of speech attributes, namely manner and place of articulation,
to universally characterise all language and accents, and experimental evidence proved their
effectiveness in foreign accent recognition. Foreign accent variation is a nuisance factor that
negatively affects automatic speech, speaker and language recognition systems [4,5]. Most
of the speech technology systems have been tailored to native speech, but those systems
rarely work well on non-native or accented speech, such as the automatic speech recognition
(ASR) [6,7].

The  most  direct  way  to  overcome  the  problem  of  non-native  speech  is  to  train  separate
statistical models for each L1-L2 pair. But by using the accent universal units, we would be
able to compensate against the L1 nuisance effects. Similarly, such units can be used in
foreign  accent  conversion  [8]  with  the  idea  of  reducing  the  perceptual  effect  of
accentedness. In [8], the accent universal units were articulatory gestures, namely manner
and  place  of  articulation  recorded  using  the electromagnetic articulography (EMA). Accent
conversion is  achieved by obtaining parallel  audio and EMA recordings from the L1 and L2
targets. Being limited to EMA recordings to obtain articulatory gesture scores is by its vary
nature  practically  very  restricted.  The automatic speech attribute transcription (ASAT)
framework  [9],  is  bottom-up  detection-based  framework,  where  speech  attributes  are
extracted using data-driven machine. We were able to successfully use these detector scores
in foreign accent recognition [3], and regional dialect recognition [10] by modeling the
stream of detector scores using the i-Vector methodology [11]. In contrast to phonotactic
language recognition systems, the i-Vector based method defers all decisions until the final
accent recognition is made. Experimental results demonstrated the effectiveness of our i-
Vector  modelling  of  attributes,  and  a  significant  system  performance  improvement  over
conventional spectrum-based techniques was demonstrated on the Finnish national foreign
language certificate corpus. Nonetheless, we also observed that some speech attributes
were  not  properly  modelled  by  the  shallow neural networks (SNN),  employing  a  single-
hidden non-linear layer. In fact, the baseline speech attribute front-end exhibit a large error
rate variance [12].

We believe that accent recognition accuracy can be greatly enhanced if more powerful data-
driven  learning  systems  replace  shallow  networks  for  speech  attribute  modelling. Deep
neural networks (DNNs),  e.g.,  [13],  have  been  successfully  applied  across  a  range  of
different speech processing tasks in recent years, such as conversational-style speech
recognition, e.g., [14], noise robust applications [15], multi- and cross-lingual learning
techniques, e.g., [16]. Inspired by the success of those applications, we want to explore the
use of DNNs to extract manner and place of articulation attributes to be used in automatic
accent recognition systems. DNNs are chosen because they (i) can be easily trained on high
dimensional features, (ii) have the potential to learn more efficient and effectively non-linear
feature mappings, and (iii) may better capture the complex relationships among speech
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attributes. Two speech attribute classifiers for manner and place of articulation, respectively,
are built using DNNs trained on telephone bandwidth speech material from the six different
languages in the OGI Multi-language Telephone Speech corpus [17].

3. Materials and methods
Manner of articulation classes, namely, glide, fricative, nasal, stop, and vowel, and
place of articulation classes, namely coronal, dental, glottal, high, labial, low, mid,
palatal, and velar, are the speech attributes used in this work. Speech attributes can be
obtained for a particular language and shared across many different languages, and they can
thereby be used to derive a universal set of speech units. Furthermore, data-sharing across
languages  at  the   attribute  level  is  naturally  facilitated  by  the  nature  of  these  classes  as
shown in [18]. In [19], the authors have demonstrated that manner and place of articulation
attributes can compactly characterise any spoken language along the same lines as in the
ASAT  paradigm  for  ASR  [9].   Furthermore,   it  was  shown  that  off-the-shelf  data-driven
attribute  detectors  built  to  address  automatic  language  identification  tasks  [18]  can  be
employed  without   either  acoustic  adaptation   or   re-training  for  characterising  speaker
accents  never  observed  before  [3].  In  [3],   attribute  detectors  were  built  using  shallow
neural networks, namely single-hidden layer, feed-forward neural networks. Here we want
to test deeper architectures.

Inspired by the success of those applications, here we want to explore the use of DNNs to
extract  manner  and  place  of  articulation  attributes  to  be  used  in  automatic  accent
recognition systems. DNNs are chosen because (i) can be easily trained on high dimensional
features, (ii) have the potential to learn more efficient and effectively non-linear feature
mappings, and (iii) may better capture the complex relationships among speech attributes.
Using the DNNs we can estimate posterior probability of a speech attribute per each frame
(around 20 ms cut of the audio). The outcome of this processing is variable length stream of
vectors  from  probability  simplex.  One  scalar  represents  the  posterior  probability  of  one
speech attribute. To be able to classify each utterance in predefined foreign accent classes
we still need to extract a fixed length vector representation. This is called an i-vector.

The  idea  behind  i-vector  model  is  that  the  feature  vectors xi, i=1,...,N,  where N is  the
number of speech attribute feature vectors, can be compressed into a fixed length vector. All
variability,  such  as  accent  speaker  and  channel,  are  retained  in  that  representation  of  an
utterance.  For  that  reason,  i-Vector  model  is  also  called  total  variability  modeling  [11].  It
stems from the idea that feature stream can be modeled by Gaussian mixture model (GMM)
that is  adapted by relevance  maximum a posteriori (MAP) from the universal background
model (UBM).  Then  stacking  the  adapted  GMM  mean  vectors  creates  a  fixed  length
representation of the utterance. But the dimensionality of the GMM supervector space is
very high, easily  more than 100000. In the i-Vector model, the utterance dependent
supervector is defined as s = m + Tw + noise, where m is the utterance independent mean
vector,  copied  from  the  UBM  by  stacking  the  mean  vectors, T is a rectangular low rank
matrix and the latent vector w is  distributed  according  to  N(0,I), the T represents the
captured  variabilities  in  the  supervector  space  and  noise  captures  the  residual  variability.
The residual is distributed  N(0,Σ), where Σ is copied directly from the GMM. The T-matrix is
estimated from the held-out corpus, typically same as the where UBM is estimated from, via
an expectation maximization (EM) algorithm. The idea of the algorithm is that we infer w,
which is the posterior mean, for each training utterance given an estimate of T-matrix and
then estimate new T-matrix  and  so  on.  The  estimation  is  very  CPU intensive,  so  typically
only few, for example five, iterations is used in practice. We use cosine scoring to measure
similarity of two i-Vectors [11].  Target accent model is nothing else than average i-vector of
all training set utterances for a given accent.
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4. Results and discussion

The front-end is built using two independent DNNs having six hidden layers and 1024 hidden
nodes.  The input feature vector is a 45-dimension mean-normalized log-filter bank feature
with up to second-order derivatives and a context window of 11 frames, forming a vector of
495-dimension 45 x 11 input. The number of output classes is equal to 6 for manner, and 10
for  place.  In  addition,  a  further  output  class  is  added  to  both  DNNs  to  handle  possible
unlabelled  frames.   The  DNN  was  trained  with  an  initial  learning  rate  of  0.008  using  the
cross-entropy objective function. It was initialised with the stacked restricted Boltzmann
machines (RBM)  by using layer by layer generative pre-training. An initial learning rate of
0.01  was  then  used  to  train  the  Gaussian-Bernoulli  RBM  and  a  learning  rate  of  0.4  was
applied to the Bernoulli-Bernoulli RBMs. This DNN architecture follows  conventional
configurations used in the speech community, and it was not optimised for the corpora and
task at hand.  The ``stories'' part of the OGI Multi-language telephone speech corpus [17]
was used to train the attribute detectors. This corpus has phonetic transcriptions for six
languages: English, German, Hindi, Japanese, Mandarin, and Spanish. Data from each
language were pooled together to obtain 5.57 hours of training and 0.52 hours of validation
data.

In Table 1, we report manner and place of articulation accuracies for each specific attribute
using either one or six hidden layers. Classification accuracies increased consistently for all
attributes  except  silence  when  moving  from  one  to  six  hidden  layers,  as  we  expected.  It
should be noted that although silence classification accuracy does not increase, it is already
above 90%. Glide and dental are instead still  very hard to detect, and even with 6 hidden
layers an accuracy of only 30% can be attained.

Table 1: Detection results for Manner (left) and Place (right). Contrasting shallow
network with 1 layer versus deep network with 6 layers.

To better appreciate experimental results reported in this paper, we compared our attribute-
based  systems  against  two  spectral-based  accent  recognition  systems  based  on  SDC  and
MFCC feature vectors, respectively, which have proven  to give best performance in  foreign
accent recognition tasks [20]. Accent classifiers in these two systems  were built using either
GMM-UBM [21]  or  i-Vector  approach.  According  to   [20],  the  UBM size  was  set  to  512,  i-
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Vector dimension to 1000 and HLDA output dimension to 180. The UBM and T-matrix were
estimated  from  the  same  held-out  set,  not  used  in  either  training  or  testing  the  foreign
accent models. The experiments are performed using a subset of NIST SRE 2008 corpus. In
our experiments, we selected the test utterances from the original 10sec NIST SRE 2008 cuts
in  order  to  keep  the  test  setup  in  line  with  the  standard  language  and  accent  recognition
test.

Table 2: Average equal error rate (EER) results on foreign accent detection task.

Above  results   indicate  the  effectiveness  of  the  DNN  attribute  features  over  spectral
SDC+MFCC and attribute features. Next, we compare the language-wise results achieved by
shallow and deep architecture for the manner case for the both the Finnish and the English
task. We compensate against the lack of data, by performing a  jack-knifing type evaluation.
More  details  of  the  experimental  setup  can  be  found  in  [22].  Table  3  shows  per-accent
recognition  accuracy  on  the  English  task.  In  both  Manner  and  DNN  manner  systems,
Cantonese  attains  the  lowest  recognition  accuracy  with   EER  of   17.68%  and  13.50%,
respectively; and the easiest accent is Thai with EER of  11.70% and 9.31%, respectively, in
both systems.

Table 3: Showing detection results per target foreign accent in terms of equal error rate
(EER). Results are obtained via jack-knifing to get reliable per target accent error rates.

Results show clear improvement in the per language detection accuracy, when more
accurate  speech  attribute  estimation  methods  are  used.  Overall,  we  are  able  to  obtain
around  10%  equal  error  rate  level  in  foreign  accent  detection.  We  are  confident  that
application of the recurrent neural network (RNN) instead of the i-vector method we would
be able to significantly improve on these current results. The variants of the RNN modeling
have  been  found  this  year  to  provide  state-of-the-art  performance  in  automatic  speech
recognition. It is able to model long-term frame dependencies that are very difficult for GMM
based models, such as HMM and i-vector models. In addition, non-linearity can be increased
quite easily as in other deep learning models. In addition to obtaining more accurate model
for speech attribute feature streams, we are currently pursuing better ways to estimate
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speech attributes themselves. One fairly clear idea is to estimate manner and place jointly
so that detection of manner will help with place and vice versa. These topics are currently
under investigation by our team and hopefully we can report new results early next year.

We have to note that results obtained here are from English telephone conversational
speech. In the deployed system we would use wideband recorded audio, where target
foreign accent models have been estimated from the actual material we will observe in the
deployed conditions. Currently, we are developing a demonstrator app where self collected
speech data will be used. We will release the app when reasonable amount of data has been
collected so that the recognition system is accurate enough.

 5. Conclusions
We managed to improve the foreign accent recognition performance on the English
telephone speech. However, the current recognition error rates still hovers at around 10%,
which means that in the border control use case 10% of the false passport detections would
actually be false alarms. Extra workload given to border control officer thus would be too
much as a lot of extra effort would be needed to verify all false alarms also. So, in order to
apply  our  techniques  in  the  MATINE  case,  we  would  need  to  improve  the  recognition
accuracy and find out minimum error rate users would be satisfied with our system. In order
to  improve  recognition  accuracy  we  could  consider  also  other  soft  biometrics  that  can  be
recognized from the speech signal, such as age and gender. Final system would then be a
fusion of all these separate recognizers.

6. Scientific publishing and other reports produced by the research project

The complete foreign accent system with speech attributes is presented in this work. Speech
attribute detection is shallow neural network.

Hamid Behravan, Ville Hautamäki, Sabato Siniscalchi, Tomi Kinnunen, and Chin-Hui Lee, "i-
Vector Modeling of Speech Attributes for Automatic Foreign Accent Recognition", IEEE
Transactions on Audio, Speech and Language Processing, 2016 (accepted).

In this work, we improved the speech attribute detection by the way of using modern deep
neural network stragies. This resulted in improvement in foreign accent recognition
performance.

Ville Hautamäki, Sabato Siniscalchi, Hamid Behravan, Valerio Mario Salerno and Ivan
Kukanov, "Boosting Universal Speech Attributes Classification with Deep Neural Network for
Foreign Accent Characterization", Interspeech 2015, Dresden, Germany, September 2015
(accepted).
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