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But wait - that was about AI and we were 
supposed to talk about machine learning
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Machine learning is the technology underlying the current 
AI revolution 

It is also surprisingly a buzzword itself. 



Machine learning: Definition

Machine learning is the subfield of computer science that 
gives computers the ability to learn without being 
explicitly programmed (Arthur Samuel, 1959). 

Related to: 
• Artificial intelligence 
• Computational statistics 
• Pattern recognition 
• Data mining 
• Predictive analytics 
• Data science 
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Main types, based on justification

Neural computation, deep neural networks 
- one original motivation: take inspiration from brain 
- current main motivation: effective with big data and big 

computational resources 

Computational learning theory 
- gives mathematical bounds on learning performance 

Probabilistic machine learning 
- justification as probabilistic modelling and statistical 

inference
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be seen as a kind of hilly landscape in the high-dimensional space of 
weight values. The negative gradient vector indicates the direction 
of steepest descent in this landscape, taking it closer to a minimum, 
where the output error is low on average. 

In practice, most practitioners use a procedure called stochastic 
gradient descent (SGD). This consists of showing the input vector 
for a few examples, computing the outputs and the errors, computing 
the average gradient for those examples, and adjusting the weights 
accordingly. The process is repeated for many small sets of examples 
from the training set until the average of the objective function stops 
decreasing. It is called stochastic because each small set of examples 
gives a noisy estimate of the average gradient over all examples. This 
simple procedure usually finds a good set of weights surprisingly 
quickly when compared with far more elaborate optimization tech-
niques18. After training, the performance of the system is measured 
on a different set of examples called a test set. This serves to test the 
generalization ability of the machine — its ability to produce sensible 
answers on new inputs that it has never seen during training. 

Many of the current practical applications of machine learning use 
linear classifiers on top of hand-engineered features. A two-class linear 
classifier computes a weighted sum of the feature vector components. 
If the weighted sum is above a threshold, the input is classified as 
belonging to a particular category. 

Since the 1960s we have known that linear classifiers can only carve 
their input space into very simple regions, namely half-spaces sepa-
rated by a hyperplane19. But problems such as image and speech recog-
nition require the input–output function to be insensitive to irrelevant 
variations of the input, such as variations in position, orientation or 
illumination of an object, or variations in the pitch or accent of speech, 
while being very sensitive to particular minute variations (for example, 
the difference between a white wolf and a breed of wolf-like white 
dog called a Samoyed). At the pixel level, images of two Samoyeds in 
different poses and in different environments may be very different 
from each other, whereas two images of a Samoyed and a wolf in the 
same position and on similar backgrounds may be very similar to each 
other. A linear classifier, or any other ‘shallow’ classifier operating on 

Figure 1 | Multilayer neural networks and backpropagation. a, A multi-
layer neural network (shown by the connected dots) can distort the input 
space to make the classes of data (examples of which are on the red and 
blue lines) linearly separable. Note how a regular grid (shown on the left) 
in input space is also transformed (shown in the middle panel) by hidden 
units. This is an illustrative example with only two input units, two hidden 
units and one output unit, but the networks used for object recognition 
or natural language processing contain tens or hundreds of thousands of 
units. Reproduced with permission from C. Olah (http://colah.github.io/). 
b, The chain rule of derivatives tells us how two small effects (that of a small 
change of x on y, and that of y on z) are composed. A small change Δx in 
x gets transformed first into a small change Δy in y by getting multiplied 
by ∂y/∂x (that is, the definition of partial derivative). Similarly, the change 
Δy creates a change Δz in z. Substituting one equation into the other 
gives the chain rule of derivatives — how Δx gets turned into Δz through 
multiplication by the product of ∂y/∂x and ∂z/∂x. It also works when x, 
y and z are vectors (and the derivatives are Jacobian matrices). c, The 
equations used for computing the forward pass in a neural net with two 
hidden layers and one output layer, each constituting a module through 

which one can backpropagate gradients. At each layer, we first compute 
the total input z to each unit, which is a weighted sum of the outputs of 
the units in the layer below. Then a non-linear function f(.) is applied to 
z to get the output of the unit. For simplicity, we have omitted bias terms. 
The non-linear functions used in neural networks include the rectified 
linear unit (ReLU) f(z) = max(0,z), commonly used in recent years, as 
well as the more conventional sigmoids, such as the hyberbolic tangent, 
f(z) = (exp(z) − exp(−z))/(exp(z) + exp(−z)) and logistic function logistic, 
f(z) = 1/(1 + exp(−z)). d, The equations used for computing the backward 
pass. At each hidden layer we compute the error derivative with respect to 
the output of each unit, which is a weighted sum of the error derivatives 
with respect to the total inputs to the units in the layer above. We then 
convert the error derivative with respect to the output into the error 
derivative with respect to the input by multiplying it by the gradient of f(z). 
At the output layer, the error derivative with respect to the output of a unit 
is computed by differentiating the cost function. This gives yl − tl if the cost 
function for unit l is 0.5(yl − tl)2, where tl is the target value. Once the ∂E/∂zk 
is known, the error-derivative for the weight wjk on the connection from 
unit j in the layer below is just yj ∂E/∂zk.
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Machine-learning technology powers many aspects of modern 
society: from web searches to content filtering on social net-
works to recommendations on e-commerce websites, and 

it is increasingly present in consumer products such as cameras and 
smartphones. Machine-learning systems are used to identify objects 
in images, transcribe speech into text, match news items, posts or 
products with users’ interests, and select relevant results of search. 
Increasingly, these applications make use of a class of techniques called 
deep learning. 

Conventional machine-learning techniques were limited in their 
ability to process natural data in their raw form. For decades, con-
structing a pattern-recognition or machine-learning system required 
careful engineering and considerable domain expertise to design a fea-
ture extractor that transformed the raw data (such as the pixel values 
of an image) into a suitable internal representation or feature vector 
from which the learning subsystem, often a classifier, could detect or 
classify patterns in the input. 

Representation learning is a set of methods that allows a machine to 
be fed with raw data and to automatically discover the representations 
needed for detection or classification. Deep-learning methods are 
representation-learning methods with multiple levels of representa-
tion, obtained by composing simple but non-linear modules that each 
transform the representation at one level (starting with the raw input) 
into a representation at a higher, slightly more abstract level. With the 
composition of enough such transformations, very complex functions 
can be learned. For classification tasks, higher layers of representation 
amplify aspects of the input that are important for discrimination and 
suppress irrelevant variations. An image, for example, comes in the 
form of an array of pixel values, and the learned features in the first 
layer of representation typically represent the presence or absence of 
edges at particular orientations and locations in the image. The second 
layer typically detects motifs by spotting particular arrangements of 
edges, regardless of small variations in the edge positions. The third 
layer may assemble motifs into larger combinations that correspond 
to parts of familiar objects, and subsequent layers would detect objects 
as combinations of these parts. The key aspect of deep learning is that 
these layers of features are not designed by human engineers: they 
are learned from data using a general-purpose learning procedure. 

Deep learning is making major advances in solving problems that 
have resisted the best attempts of the artificial intelligence commu-
nity for many years. It has turned out to be very good at discovering 

intricate structures in high-dimensional data and is therefore applica-
ble to many domains of science, business and government. In addition 
to beating records in image recognition1–4 and speech recognition5–7, it 
has beaten other machine-learning techniques at predicting the activ-
ity of potential drug molecules8, analysing particle accelerator data9,10, 
reconstructing brain circuits11, and predicting the effects of mutations 
in non-coding DNA on gene expression and disease12,13. Perhaps more 
surprisingly, deep learning has produced extremely promising results 
for various tasks in natural language understanding14, particularly 
topic classification, sentiment analysis, question answering15 and lan-
guage translation16,17. 

We think that deep learning will have many more successes in the 
near future because it requires very little engineering by hand, so it 
can easily take advantage of increases in the amount of available com-
putation and data. New learning algorithms and architectures that are 
currently being developed for deep neural networks will only acceler-
ate this progress. 

Supervised learning 
The most common form of machine learning, deep or not, is super-
vised learning. Imagine that we want to build a system that can classify 
images as containing, say, a house, a car, a person or a pet. We first 
collect a large data set of images of houses, cars, people and pets, each 
labelled with its category. During training, the machine is shown an 
image and produces an output in the form of a vector of scores, one 
for each category. We want the desired category to have the highest 
score of all categories, but this is unlikely to happen before training. 
We compute an objective function that measures the error (or dis-
tance) between the output scores and the desired pattern of scores. The 
machine then modifies its internal adjustable parameters to reduce 
this error. These adjustable parameters, often called weights, are real 
numbers that can be seen as ‘knobs’ that define the input–output func-
tion of the machine. In a typical deep-learning system, there may be 
hundreds of millions of these adjustable weights, and hundreds of 
millions of labelled examples with which to train the machine. 

To properly adjust the weight vector, the learning algorithm com-
putes a gradient vector that, for each weight, indicates by what amount 
the error would increase or decrease if the weight were increased by a 
tiny amount. The weight vector is then adjusted in the opposite direc-
tion to the gradient vector. 

The objective function, averaged over all the training examples, can 

Deep learning allows computational models that are composed of multiple processing layers to learn representations of 
data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech rec-
ognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep 
learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine 
should change its internal parameters that are used to compute the representation in each layer from the representation in 
the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and 
audio, whereas recurrent nets have shone light on sequential data such as text and speech. 

Deep learning
Yann LeCun1,2, Yoshua Bengio3 & Geoffrey Hinton4,5
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The key idea behind the probabilistic framework to machine learn-
ing is that learning can be thought of as inferring plausible models 
to explain observed data. A machine can use such models to make 

predictions about future data, and take decisions that are rational given 
these predictions. Uncertainty plays a fundamental part in all of this. 
Observed data can be consistent with many models, and therefore which 
model is appropriate, given the data, is uncertain. Similarly, predictions 
about future data and the future consequences of actions are uncertain. 
Probability theory provides a framework for modelling uncertainty.

This Review starts with an introduction to the probabilistic approach 
to machine learning and Bayesian inference, and then discusses some of 
the state-of-the-art advances in the field. Many aspects of learning and 
intelligence crucially depend on the careful probabilistic representation of 
uncertainty. Probabilistic approaches have only recently become a main-
stream approach to artificial intelligence1, robotics2 and machine learn-
ing3,4. Even now, there is controversy in these fields about how important 
it is to fully represent uncertainty. For example, advances using deep neural 
networks to solve challenging pattern-recognition problems such as speech 
recognition5, image classification6,7, and prediction of words in text8, do not 
overtly represent the uncertainty in the structure or parameters of those 
neural networks. However, my focus will not be on these types of pattern-
recognition problems, characterized by the availability of large amounts 
of data, but on problems for which uncertainty is really a key ingredient, 
for example where a decision may depend on the amount of uncertainty. 

I highlight five areas of current research at the frontier of probabilistic 
machine learning, emphasizing areas that are of broad relevance to sci-
entists across many fields: probabilistic programming, which is a general 
framework for expressing probabilistic models as computer programs 
and which could have a major impact on scientific modelling; Bayes-
ian optimization, which is an approach to globally optimizing unknown 
functions; probabilistic data compression; automating the discovery of 
plausible and interpretable models from data; and hierarchical modelling 
for learning many related models, for example for personalized medicine 
or recommendation. Although considerable challenges remain, the com-
ing decade promises substantial advances in artificial intelligence and 
machine learning based on the probabilistic framework.

Probabilistic modelling and representing uncertainty
At the most basic level, machine learning seeks to develop methods for 
computers to improve their performance at certain tasks on the basis of 

observed data. Typical examples of such tasks might include detecting 
pedestrians in images taken from an autonomous vehicle, classifying 
gene-expression patterns from leukaemia patients into subtypes by clin-
ical outcome, or translating English sentences into French. However, as 
I discuss, the scope of machine-learning tasks is even broader than these 
pattern classification or mapping tasks, and can include optimization 
and decision making, compressing data and automatically extracting 
interpretable models from data.

Data are the key ingredients of all machine-learning systems. But 
data, even so-called big data, are useless on their own until one extracts 
knowledge or inferences from them. Almost all machine-learning 
tasks can be formulated as making inferences about missing or latent 
data from the observed data — I will variously use the terms inference, 
prediction or forecasting to refer to this general task. Elaborating the 
example mentioned, consider classifying people with leukaemia into 
one of the four main subtypes of this disease on the basis of each person’s 
measured gene-expression patterns. Here, the observed data are pairs of 
gene-expression patterns and labelled subtypes, and the unobserved or 
missing data to be inferred are the subtypes for new patients. To make 
inferences about unobserved data from the observed data, the learning 
system needs to make some assumptions; taken together these assump-
tions constitute a model. A model can be very simple and rigid, such as a 
classic statistical linear regression model, or complex and flexible, such 
as a large and deep neural network, or even a model with infinitely many 
parameters. I return to this point in the next section. A model is con-
sidered to be well defined if it can make forecasts or predictions about 
unobserved data having been trained on observed data (otherwise, if 
the model cannot make predictions it cannot be falsified, in the sense 
of the philosopher Karl Popper’s proposal for evaluating hypotheses, or 
as the theoretical physicist Wolfgang Pauli said the model is “not even 
wrong”). For example, in the classification setting, a well-defined model 
should be able to provide predictions of class labels for new patients. 
Since any sensible model will be uncertain when predicting unobserved 
data, uncertainty plays a fundamental part in modelling.

There are many forms of uncertainty in modelling. At the lowest 
level, model uncertainty is introduced from measurement noise, for 
example, pixel noise or blur in images. At higher levels, a model may 
have many parameters, such as the coefficients of a linear regression, 
and there is uncertainty about which values of these parameters will 
be good at predicting new data. Finally, at the highest levels, there is 

How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learn-
ing is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines 
that learn from data acquired through experience. The probabilistic framework, which describes how to represent and 
manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, 
robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and dis-
cusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, 
data compression and automatic model discovery. 

Probabilistic machine learning 
and artificial intelligence
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often uncertainty about even the general structure of the model: is linear 
regression or a neural network appropriate, if the latter, how many layers 
should it have, and so on. 

The probabilistic approach to modelling uses probability theory to 
express all forms of uncertainty9. Probability theory is the mathematical 
language for representing and manipulating uncertainty10, in much the 
same way as calculus is the language for representing and manipulating 
rates of change. Fortunately, the probabilistic approach to modelling is 
conceptually very simple: probability distributions are used to represent 
all the uncertain unobserved quantities in a model (including structural, 
parametric and noise-related) and how they relate to the data. Then the 
basic rules of probability theory are used to infer the unobserved quan-
tities given the observed data. Learning from data occurs through the 
transformation of the prior probability distributions (defined before 
observing the data), into posterior distributions (after observing data). 
The application of probability theory to learning from data is called 
Bayesian learning (Box 1). 

Apart from its conceptual simplicity, there are several appealing prop-
erties of the probabilistic framework for machine intelligence. Simple 
probability distributions over single or a few variables can be com-
posed to form the building blocks of larger, more complex models. The 
dominant paradigm in machine learning over the past two decades for 
representing such compositional probabilistic models has been graphi-
cal models11, with variants including directed graphs (also known as 
Bayesian networks and belief networks), undirected graphs (also known 
as Markov networks and random fields), and mixed graphs with both 
directed and undirected edges (Fig. 1). As discussed later, probabilistic 
programming offers an elegant way of generalizing graphical models, 
allowing a much richer representation of models. The compositionality 
of probabilistic models means that the behaviour of these building blocks 
in the context of the larger model is often much easier to understand 
than, say, what will happen if one couples a non-linear dynamical system 
(for example, a recurrent neural network) to another. In particular, for 
a well-defined probabilistic model, it is always possible to generate data 
from the model; such ‘imaginary’ data provide a window into the ‘mind’ 
of the probabilistic model, helping us to understand both the initial prior 
assumptions and what the model has learned at any later stage.

Probabilistic modelling also has some conceptual advantages over 
alternatives because it is a normative theory for learning in artificially 
intelligent systems. How should an artificially intelligent system represent 
and update its beliefs about the world in light of data? The Cox axioms 
define some desiderata for representing beliefs; a consequence of these 
axioms is that ‘degrees of belief ’, ranging from ‘impossible’ to ‘absolutely 
certain’, must follow all the rules of probability theory10,12,13. This justifies 
the use of subjective Bayesian probabilistic representations in artificial 
intelligence. An argument for Bayesian representations in artificial intel-
ligence that is motivated by decision theory is given by the Dutch book 
theorem. The argument rests on the idea that the strength of beliefs of an 
agent can be assessed by asking the agent whether it would be willing to 
accept bets at various odds (ratios of payoffs). The Dutch book theorem 
states that unless an artificial intelligence system’s (or human’s, for that 
matter) degrees of beliefs are consistent with the rules of probability it 
will be willing to accept bets that are guaranteed to lose money14. Because 
of the force of these and many other arguments on the importance of a 
principled handling of uncertainty for intelligence, Bayesian probabilistic 
modelling has emerged not only as the theoretical foundation for ration-
ality in artificial intelligence systems, but also as a model for normative 
behaviour in humans and animals15–18 (but see refs 19, 20 for a discussion), 
and much research is devoted to understanding how neural circuitry may 
be implementing Bayesian inference21,22.

Although conceptually simple, a fully probabilistic approach to 
machine learning poses a number of computational and modelling chal-
lenges. Computationally, the main challenge is that learning involves mar-
ginalizing (summing out) all the variables in the model except for the 
variables of interest (Box 1). Such high-dimensional sums and integrals 
are generally computationally hard, in the sense that for many models 

There are two simple rules that underlie probability theory: the sum 
rule:

and the product rule:

Here x and y correspond to observed or uncertain quantities, taking 
values in some sets X and Y, respectively. For example, x and y might 
relate to the weather in Cambridge and London, respectively, both 
taking values in the set X = Y = {rainy,cloudy,sunny}. P(x) corresponds 
to the probability of x, which can be either a statement about the 
frequency of observing a particular value, or a subjective belief about 
it. P(x,y) is the joint probability of observing x and y, and P(y|x) is the 
probability of y conditioned on observing the value of x. The sum rule 
states that the marginal of x is obtained by summing (or integrating 
for continuous variables) the joint over y. The product rule states that 
the joint can be decomposed as the product of the marginal and the 
conditional. Bayes rule is a corollary of these two rules:

We can apply probability theory to machine learning by replacing 
the symbols above: we replace x by D to denote the observed data, 
we replace y by θ to denote the unknown parameters of a model, and 
we condition all terms on m, the class of probabilistic models we are 
considering. For learning, we thus get:

where P(D|θ,m) is the likelihood of parameters θ in model m, 
P(θ|m) is the prior probability of θ and P(θ|D, m) is the posterior of θ 
given data D.  

For example, the data D might be a time series of hourly 
observations of the weather in Cambridge and London, and the 
model might attempt to capture the joint weather patterns at both 
locations over successive hours, with parameters θ modelling 
correlations over time and space. Learning is the transformation 
of prior knowledge or assumptions about the parameters P(θ|m), 
through the data D, into posterior knowledge about the parameters, 
P(θ|D,m). This posterior is now the prior to be used for future data. 
A learned model can be used to predict or forecast new unseen test 
data, Dtest, by simply applying the sum and product rule to get the 
prediction:

Finally, different models can be compared by applying Bayes rule 
at the level of m: 

The term P(D|m) is the marginal likelihood or model evidence, 
and implements a preference for simpler models known as 
Bayesian Ockham’s razor 78,96,97.

BOX 1
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often uncertainty about even the general structure of the model: is linear 
regression or a neural network appropriate, if the latter, how many layers 
should it have, and so on. 

The probabilistic approach to modelling uses probability theory to 
express all forms of uncertainty9. Probability theory is the mathematical 
language for representing and manipulating uncertainty10, in much the 
same way as calculus is the language for representing and manipulating 
rates of change. Fortunately, the probabilistic approach to modelling is 
conceptually very simple: probability distributions are used to represent 
all the uncertain unobserved quantities in a model (including structural, 
parametric and noise-related) and how they relate to the data. Then the 
basic rules of probability theory are used to infer the unobserved quan-
tities given the observed data. Learning from data occurs through the 
transformation of the prior probability distributions (defined before 
observing the data), into posterior distributions (after observing data). 
The application of probability theory to learning from data is called 
Bayesian learning (Box 1). 

Apart from its conceptual simplicity, there are several appealing prop-
erties of the probabilistic framework for machine intelligence. Simple 
probability distributions over single or a few variables can be com-
posed to form the building blocks of larger, more complex models. The 
dominant paradigm in machine learning over the past two decades for 
representing such compositional probabilistic models has been graphi-
cal models11, with variants including directed graphs (also known as 
Bayesian networks and belief networks), undirected graphs (also known 
as Markov networks and random fields), and mixed graphs with both 
directed and undirected edges (Fig. 1). As discussed later, probabilistic 
programming offers an elegant way of generalizing graphical models, 
allowing a much richer representation of models. The compositionality 
of probabilistic models means that the behaviour of these building blocks 
in the context of the larger model is often much easier to understand 
than, say, what will happen if one couples a non-linear dynamical system 
(for example, a recurrent neural network) to another. In particular, for 
a well-defined probabilistic model, it is always possible to generate data 
from the model; such ‘imaginary’ data provide a window into the ‘mind’ 
of the probabilistic model, helping us to understand both the initial prior 
assumptions and what the model has learned at any later stage.

Probabilistic modelling also has some conceptual advantages over 
alternatives because it is a normative theory for learning in artificially 
intelligent systems. How should an artificially intelligent system represent 
and update its beliefs about the world in light of data? The Cox axioms 
define some desiderata for representing beliefs; a consequence of these 
axioms is that ‘degrees of belief ’, ranging from ‘impossible’ to ‘absolutely 
certain’, must follow all the rules of probability theory10,12,13. This justifies 
the use of subjective Bayesian probabilistic representations in artificial 
intelligence. An argument for Bayesian representations in artificial intel-
ligence that is motivated by decision theory is given by the Dutch book 
theorem. The argument rests on the idea that the strength of beliefs of an 
agent can be assessed by asking the agent whether it would be willing to 
accept bets at various odds (ratios of payoffs). The Dutch book theorem 
states that unless an artificial intelligence system’s (or human’s, for that 
matter) degrees of beliefs are consistent with the rules of probability it 
will be willing to accept bets that are guaranteed to lose money14. Because 
of the force of these and many other arguments on the importance of a 
principled handling of uncertainty for intelligence, Bayesian probabilistic 
modelling has emerged not only as the theoretical foundation for ration-
ality in artificial intelligence systems, but also as a model for normative 
behaviour in humans and animals15–18 (but see refs 19, 20 for a discussion), 
and much research is devoted to understanding how neural circuitry may 
be implementing Bayesian inference21,22.

Although conceptually simple, a fully probabilistic approach to 
machine learning poses a number of computational and modelling chal-
lenges. Computationally, the main challenge is that learning involves mar-
ginalizing (summing out) all the variables in the model except for the 
variables of interest (Box 1). Such high-dimensional sums and integrals 
are generally computationally hard, in the sense that for many models 
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and the product rule:

Here x and y correspond to observed or uncertain quantities, taking 
values in some sets X and Y, respectively. For example, x and y might 
relate to the weather in Cambridge and London, respectively, both 
taking values in the set X = Y = {rainy,cloudy,sunny}. P(x) corresponds 
to the probability of x, which can be either a statement about the 
frequency of observing a particular value, or a subjective belief about 
it. P(x,y) is the joint probability of observing x and y, and P(y|x) is the 
probability of y conditioned on observing the value of x. The sum rule 
states that the marginal of x is obtained by summing (or integrating 
for continuous variables) the joint over y. The product rule states that 
the joint can be decomposed as the product of the marginal and the 
conditional. Bayes rule is a corollary of these two rules:

We can apply probability theory to machine learning by replacing 
the symbols above: we replace x by D to denote the observed data, 
we replace y by θ to denote the unknown parameters of a model, and 
we condition all terms on m, the class of probabilistic models we are 
considering. For learning, we thus get:

where P(D|θ,m) is the likelihood of parameters θ in model m, 
P(θ|m) is the prior probability of θ and P(θ|D, m) is the posterior of θ 
given data D.  

For example, the data D might be a time series of hourly 
observations of the weather in Cambridge and London, and the 
model might attempt to capture the joint weather patterns at both 
locations over successive hours, with parameters θ modelling 
correlations over time and space. Learning is the transformation 
of prior knowledge or assumptions about the parameters P(θ|m), 
through the data D, into posterior knowledge about the parameters, 
P(θ|D,m). This posterior is now the prior to be used for future data. 
A learned model can be used to predict or forecast new unseen test 
data, Dtest, by simply applying the sum and product rule to get the 
prediction:

Finally, different models can be compared by applying Bayes rule 
at the level of m: 

The term P(D|m) is the marginal likelihood or model evidence, 
and implements a preference for simpler models known as 
Bayesian Ockham’s razor 78,96,97.
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often uncertainty about even the general structure of the model: is linear 
regression or a neural network appropriate, if the latter, how many layers 
should it have, and so on. 

The probabilistic approach to modelling uses probability theory to 
express all forms of uncertainty9. Probability theory is the mathematical 
language for representing and manipulating uncertainty10, in much the 
same way as calculus is the language for representing and manipulating 
rates of change. Fortunately, the probabilistic approach to modelling is 
conceptually very simple: probability distributions are used to represent 
all the uncertain unobserved quantities in a model (including structural, 
parametric and noise-related) and how they relate to the data. Then the 
basic rules of probability theory are used to infer the unobserved quan-
tities given the observed data. Learning from data occurs through the 
transformation of the prior probability distributions (defined before 
observing the data), into posterior distributions (after observing data). 
The application of probability theory to learning from data is called 
Bayesian learning (Box 1). 

Apart from its conceptual simplicity, there are several appealing prop-
erties of the probabilistic framework for machine intelligence. Simple 
probability distributions over single or a few variables can be com-
posed to form the building blocks of larger, more complex models. The 
dominant paradigm in machine learning over the past two decades for 
representing such compositional probabilistic models has been graphi-
cal models11, with variants including directed graphs (also known as 
Bayesian networks and belief networks), undirected graphs (also known 
as Markov networks and random fields), and mixed graphs with both 
directed and undirected edges (Fig. 1). As discussed later, probabilistic 
programming offers an elegant way of generalizing graphical models, 
allowing a much richer representation of models. The compositionality 
of probabilistic models means that the behaviour of these building blocks 
in the context of the larger model is often much easier to understand 
than, say, what will happen if one couples a non-linear dynamical system 
(for example, a recurrent neural network) to another. In particular, for 
a well-defined probabilistic model, it is always possible to generate data 
from the model; such ‘imaginary’ data provide a window into the ‘mind’ 
of the probabilistic model, helping us to understand both the initial prior 
assumptions and what the model has learned at any later stage.

Probabilistic modelling also has some conceptual advantages over 
alternatives because it is a normative theory for learning in artificially 
intelligent systems. How should an artificially intelligent system represent 
and update its beliefs about the world in light of data? The Cox axioms 
define some desiderata for representing beliefs; a consequence of these 
axioms is that ‘degrees of belief ’, ranging from ‘impossible’ to ‘absolutely 
certain’, must follow all the rules of probability theory10,12,13. This justifies 
the use of subjective Bayesian probabilistic representations in artificial 
intelligence. An argument for Bayesian representations in artificial intel-
ligence that is motivated by decision theory is given by the Dutch book 
theorem. The argument rests on the idea that the strength of beliefs of an 
agent can be assessed by asking the agent whether it would be willing to 
accept bets at various odds (ratios of payoffs). The Dutch book theorem 
states that unless an artificial intelligence system’s (or human’s, for that 
matter) degrees of beliefs are consistent with the rules of probability it 
will be willing to accept bets that are guaranteed to lose money14. Because 
of the force of these and many other arguments on the importance of a 
principled handling of uncertainty for intelligence, Bayesian probabilistic 
modelling has emerged not only as the theoretical foundation for ration-
ality in artificial intelligence systems, but also as a model for normative 
behaviour in humans and animals15–18 (but see refs 19, 20 for a discussion), 
and much research is devoted to understanding how neural circuitry may 
be implementing Bayesian inference21,22.

Although conceptually simple, a fully probabilistic approach to 
machine learning poses a number of computational and modelling chal-
lenges. Computationally, the main challenge is that learning involves mar-
ginalizing (summing out) all the variables in the model except for the 
variables of interest (Box 1). Such high-dimensional sums and integrals 
are generally computationally hard, in the sense that for many models 

There are two simple rules that underlie probability theory: the sum 
rule:

and the product rule:

Here x and y correspond to observed or uncertain quantities, taking 
values in some sets X and Y, respectively. For example, x and y might 
relate to the weather in Cambridge and London, respectively, both 
taking values in the set X = Y = {rainy,cloudy,sunny}. P(x) corresponds 
to the probability of x, which can be either a statement about the 
frequency of observing a particular value, or a subjective belief about 
it. P(x,y) is the joint probability of observing x and y, and P(y|x) is the 
probability of y conditioned on observing the value of x. The sum rule 
states that the marginal of x is obtained by summing (or integrating 
for continuous variables) the joint over y. The product rule states that 
the joint can be decomposed as the product of the marginal and the 
conditional. Bayes rule is a corollary of these two rules:

We can apply probability theory to machine learning by replacing 
the symbols above: we replace x by D to denote the observed data, 
we replace y by θ to denote the unknown parameters of a model, and 
we condition all terms on m, the class of probabilistic models we are 
considering. For learning, we thus get:

where P(D|θ,m) is the likelihood of parameters θ in model m, 
P(θ|m) is the prior probability of θ and P(θ|D, m) is the posterior of θ 
given data D.  

For example, the data D might be a time series of hourly 
observations of the weather in Cambridge and London, and the 
model might attempt to capture the joint weather patterns at both 
locations over successive hours, with parameters θ modelling 
correlations over time and space. Learning is the transformation 
of prior knowledge or assumptions about the parameters P(θ|m), 
through the data D, into posterior knowledge about the parameters, 
P(θ|D,m). This posterior is now the prior to be used for future data. 
A learned model can be used to predict or forecast new unseen test 
data, Dtest, by simply applying the sum and product rule to get the 
prediction:

Finally, different models can be compared by applying Bayes rule 
at the level of m: 

The term P(D|m) is the marginal likelihood or model evidence, 
and implements a preference for simpler models known as 
Bayesian Ockham’s razor 78,96,97.
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Tensions

- black-box vs white-box 
- heuristic vs rigorous (neats vs scruffies) 

10

A bit funny dichotomies, because obviously we ultimately 
want a combination of both! 

Example: Bayesian deep learning 



Main types, based on technical goals

Supervised learning 
Unsupervised learning 
Reinforcement learning 

These are conceptual tools, meant to help think about machine 
learning tasks. Many complementary concepts exist: 

- active learning 
- interactive learning 
- transfer learning … 

Real operational systems usually combine many types and other 
elements: decision theory, control theory, …
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Main topics in ICML2017, 1/2
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Main topics in ICML2017, 2/2
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Why a machine learning boom right now?

- a lot of data in many problems, “big data” 
- computational resources 
- software and computational infrastructure 
- fashionable to call various data analysis systems 

machine learning or AI
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Summary

Machine learning = techniques that learn based on data to 
solve problems 
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Machine learning in Finland
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Samples of machine learning and data mining

Detection of dense communities 
in social networks and attributes 
that describe the communities

Deep Learning to derive abstract high-level 
features in a hierarchical manner that 
imitates human perception.

Personalized medicine to 
make individually tailored 
treatment decisions based 
on genomic and other data

Plenty of jobs
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Wanted: Interactive modelling
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Interactive Information Visualization

1. The user starts new search or gives feedback to
previous results.

2. Based on user's interactions learn the model of
user's intentions.

3. Update the data model according to the user's
needs.

4. Based on user and data models create a human
readable representation of the data.

We visualise data, according to a model of user's knowledge and intentions,
learned through user interaction and feedback.

show results

expert feedbackuser model
Applications:

- personalized cancer medicine    - search in private data
- search for scientific documents

data model
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Multiple views on a cell: DREAM meets reality

I Core problem in personalized cancer medicine
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Two-color microarrays

12Petri Auvinen , DNA Sequencing and Genomics Laboratory,

Institute of Biotechnology, University of Helsinki

Solexa pipeline: bridge amplification
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A. How can we optimally use the different measurement data?

B. How can we bring in prior biological knowledge?

C. How can we learn from comparatively few training examples?
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Method: graphical model of proposed solution
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Figure 1. This paper studies methodology for inference of parameter
values of cognitive models from observational data in HCI. At the bot-
tom of the figure, we have behavioral data (orange histograms), such as
times and targets of menu selections. At the top of the figure, a cognitive
model generates simulated interaction data (blue histograms). In this
paper, approximate Bayesian computation (ABC) is investigated to iden-
tify the model parameter values that yield the best fit between the real
data and simulator-generated data, while keeping the parameter values
reasonable given prior knowledge.

have included: (1) simplifying models until traditional infer-
ence methods are possible; (2) using values adopted from the
literature or adjusting them without studying their effect on
behavior; or (3) manually iterating to find values that lead to ac-
ceptable performance. Compared to this, principled inference
methods might reduce the potential for ambiguity, miscalcu-
lation, and bias, because model parameter values could be
properly conditioned on both literature and prior knowledge,
as well as the observation data.

ABC is particularly promising for inferring the values of pro-
cess model parameters from naturalistic data—a problem that
is known to be difficult in cognitive science [31]. The reason is
that ABC does not make any further assumptions of the model,
apart from the researcher being able to repeatedly simulate
data from it using different parameter values. ABC performs
inference by systematically simulating user behavior with dif-
ferent parameter configurations. Based on the simulations,
ABC estimates which parameter values lead to behavior that
is similar to observations, while also being reasonable consid-
ering our prior knowledge of plausible parameter values.

As a challenging and representative example, this paper looks
at a recent HCI process model class in which behavioral strate-
gies are learned using reinforcement learning [13, 16, 17, 36].
These models assume that users behave (approximately) to
maximize utility given limits on their own capacity. The mod-
els predict how a user will behave in situations constrained by
(1) the environment, such as the physical structure of a user
interface (UI); (2) goals, such as the trade-off between time
and effort; and (3) the user’s cognitive and perceptual capabil-
ities, such as memory capacity or fixation duration. This class
of models, called computational rationality (CR) models, has
been explored previously in HCI, for example in SNIF-ACT
[16], economic models of search [3], foraging theory [38], and
adaptive interaction [36]. The recent interest in this class is
due to the benefit that, when compared with classic cognitive
models, it requires no predefined specification of the user’s

task solution, only the objectives. Given those, and the con-
straints of the situation, we can use machine learning to infer
the optimal behavior policy. However, achieving the inverse,
that is inferring the constraints assuming that the behavior is
optimal, is exceedingly difficult. The assumptions about data
quality and granularity of previously explored methods for
this inverse reinforcement learning problem [32, 39, 45] tend
to be unreasonable when often only noisy or aggregate-level
data exists, such as is often the case in HCI studies.

Our application case is a recent model of menu interaction
[13]. The model studied here has previously captured adap-
tation of search behavior, and consequently changes to task
completion times, in various situations [13]. The model makes
parametric assumptions about the user, for example about the
visual system (e.g., fixation durations), and uses reinforcement
learning to obtain a behavioral strategy suitable for a partic-
ular menu. The inverse problem we study is how to obtain
estimates of the properties of the user’s visual system from
selection time data only (click times of menu items). How-
ever, due to the complexity of the model, its parameter values
were originally tuned based on literature. Later in Study 1, we
demonstrate that we are able to infer the parameter values of
this model based on observation data, such that the predictions
improve over the baseline, while the parameter values still
agree with the literature. To the best of our knowledge, this is
also the first time such inverse reinforcement learning problem
has been solved based on aggregate-level data.

We also aim to demonstrate the applicability of ABC, and
inference in general, in two situations: model development
and modeling of individuals. In Study 2, we demonstrate how
ABC allows us to make meaningful comparisons between mul-
tiple model variants, and their comparable parameters, after
they all have been fit to the same dataset. This presents a
method for speeding up the development of these kind of com-
plex models, though automatic inference of model parameter
values. In Study 3, we demonstrate how ABC allows us to
infer model parameter values for individual users. We discover
that overall these individual models outperform a population-
level model fit to a larger set of data, thus demonstrating the
benefit of individual models. As a comparison, it would not
be possible to fit individual models based on literature alone,
as the information generally only applies on population level.

OVERVIEW OF APPROACH
This paper is concerned with inference of model parameter val-
ues from data, which is also called inverse modeling. Inverse
modeling answers the question: “what were the parameter
values of the model, assuming the observed data was gener-
ated from the model?” Our goal is to assess the usefulness of
approximate Bayesian computation (ABC) [42] to this end.

We now give a short overview of inverse modeling in HCI, after
which we review ABC and explain its applicability. We finally
provide a short overview of the particular ABC algorithm,
BOLFI [18], we use in this study.

Inverse Modeling Approaches for Cognitive Models
For models that have simple algebraic forms, such as linear
regression, inverse modeling is simple, as we can explicitly
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